
λ Calculus – Church Numerals and Lists

Michael Smith

May 13, 2004

1 Church Numerals

In the pure λ calculus, there is no concept of a ‘number’ – the only things we get to play around
with are function definitions and applications. We therefore need to define the natural numbers
in terms of functions. If we hark back to Peano’s postulates, all we need is:

• A zero function – i.e. zero(x1, . . . , xn) = 0.

• A successor function – i.e. succ(n) = n+ 1.

Notice here how these correspond to the definition of primitive recursive functions. Our λ
calculus clearly allows us to model the other primitives very easily (projection, composition
and primitive recursion) if we felt inclined to do so.

We now have the problem of how to translate the above into λ terms. Remember, however,
that we are looking for functions that are themselves numerals – not ones that generate numerals
for us. To this end, we do not need to define a successor function – we could just pick any
arbitrary function and apply it n times to add n to its argument. So the only problem is in
defining zero. Again though, this isn’t a problem, as zero is just the successor function applied
zero times to its argument (which can be arbitrary). So we define the natural numbers as:

0 = λf.λx.x

1 = λf.λx.fx

2 = λf.λx.f(fx)
...

Note that x and f are our ‘zero’ and ‘successor’ functions respectively, but we can’t leave them
as free variables (given that they are arbitrary), which is why we need the λ bindings. These
are known as Church numerals.

Now that we’ve got numbers, we can define some arithmetic expressions. Let’s start simple.
Suppose we have a Church numeral n, and want to add ‘1’ to it – all we need to do is apply f
one more time to it. The only thing we need to remember to do is to strip the λ’s from n, and
shove them back on again at the end:

succ = λn.λf.λx.f(nfx)

Similarly, adding two numbers together is nice and easy, since we just need to replace the x in
one of them by the whole of the second number. So to add n1 and n2:

add = λn1.λn2.λf.λx.n1f(n2fx)

1



Multiplication also turns out to be easy, as in order to get n1 copies of n2, just put n2 into
each f in n1. The idea is simple - we just need to juggle things round a bit so that the x in
each copy of n2 disappears (this is done by passing in n2f , which is a function that takes one
argument, x, and so chains the new number together by itself):

mult = λn1.λn2.λf.n1(n2f)

Just to round things off, exponentiation is the easiest of the lot! All we need to do is pass n1

into n2, causing it to be multiplied by itself n2 times. So nn2
1 is:

exp = λn1.λn2.n2n1

Consider all the operations we’ve done so far - they’ve all produced bigger numbers than
we started with. So, you ask, what about operations like division, or subtraction? It may be
of comfort to know that these operations can be done, but we should first consider a much
simpler task – that of calculating the predecessor of a number (i.e. subtracting 1). As a first
guess, you might come up with a function like the following:

wrong pred = λn.λf.λx.(λa.λb.b)(nfx)

You might be under the impression that the λa.λb.b will ‘eat up’ the first f in n, giving us the
required answer. So why is this not the case? Simply because f is not the first argument to
this expression. Remember the brackets – we cannot say that θ(f(fx)) = θ(f)(fx), since we
would be magically moving the first argument of f to the second argument of θ. The actual
result of the above is to consume the whole number.

Demoralised by our failure, how can we come up with a solution to this problem? If we
think a little, it’s possible to imaging crawling along the number, counting how many f ’s we go
past (by building up a new number). If we can do this, then why not, in addition to counting
the f ’s, remember how many f ’s we had previously counted. When we get to the end of n,
we’re then holding both n and n− 1. Take a look at this:

(0, 0)→ (0, 1)→ (1, 2)→ (2, 3) . . .

Starting with the pair (0, 0), we just apply n transitions to get to the pair (n− 1, n). So we’re
looking to give the number n the pair (0, 0) as its x argument, and a function that corresponds
to these transitions as its f argument. Clearly this function just needs to take (a, b) as its
argument and produce (b, b+ 1).

The only thing left to say before we write this predecessor function down, is that we need
a way of encoding pairs. If you are worried about just assuming that such a representation
exists, let me point out that the following functions will work, where pair is the constructor,
and #1 and #2 are the projections:

pair = λa.λb.λf.fab

#1 = λp.p(λa.λb.a)

#2 = λp.p(λa.λb.b)

We can now, without cause for concern, write down the predecessor function:

pred = λn.#1 (n [λp.pair (#2 p) (succ(#2 p))] [pair 0 0])

By substituting the transition function for f in n, it gets applied n times to the pair (0, 0)
(x). Thus the only thing left to do is to extract the first item in the pair at the end, which is
(happily) n− 1!

Notice that we can now construct a subtraction function – just pass in pred as f , and n1

as x, to n2 in order to subtract 1 from n1, n2 times. To compute n1 − n2:

subtract = λn1.λn2.n2 pred n1

2



2 Lists

We can now extend these ideas to consider a representation of lists. Instead of just applying a
function f multiple times to x, we can imagine passing each f a value an. This means that we
can construct lists of values, in the following way:

[] = λf.λx.x

a :: [] = λf.λx.fax

b :: a :: [] = λf.λx.fb(fax)
...

Notice that this is exactly what the fold left functional does in ML, if we pass the function in
as f .

As this form is using the same structure as the Church numerals, similar functions are going
to apply. For example, the cons operation is a lot like succ , except that we have to add a
value to the list as well. To construct a::l:

cons = λa.λl.λf.λx.fa(lfx)

Another simple operation is that to extract the head of the list, although this doesn’t really
have an analogy with the numerals. All we need to do is let f be a function that returns its
first argument, and ignores the rest (we could also be sneaky and let x be the empty list, so
that we return a vaguely sensible result if we try to extract the head of an empty list). To find
the head of l:

head = λl.l(λa.λb.a)x

As expected, the interesting case is the analogy to pred– that of extracting the tail of the
list. The expression is pretty much identical, except that we start with the pair ([], []), and have
to remember to hold onto the list values as we reconstruct it and its tail. To find the tail of l:

tail = λl.#1 (l [λp.λq.pair (#2 q) (λf.λp.f p (#2 q f p))] [pair nil nil])

It’s interesting to note that this representation of a list has certain functions (such as a
map, or a fold function) that are easy to implement with it, whereas others (such as tail) turn
out to be much harder than expected. Conversely, if we were to represent a list as a nested
sequence of pairs, the tail operation would be trivial, whereas doing something like map would
be quite tricky. Clearly there is a trade-off to be had between the various ways of representing
list structures in the λ calculus.

3


