
Part IB Revision Notes
Logic And Proof

Michael Smith

April 11, 2004

1 Definitions

• An interpretation is a specific assignment of metavariables to values.

• A valid statement is satisfied by all possible interpretations.

• A consistent or satisfiable set of statements are all satisfied by some interpretation.

• If a set of statements S entails another statement A (S |= A), then any satisfying
intrepretation of S also satisfies A.

2 Propositional Logic

• An interpretation is a function from the propositional letters (atomics) in a statement to
{t, f}. If an interpretation I satisfies a formula A (i.e. it evaluates to t), then |=I A.

• Implication: A |= B iff |= A→ B (|= ¬A ∨B).

• Equivalence: A ' B iff |= A↔ B (A |= B and B |= A).

• Converting to negation normal form requires you to firstly get rid of all implications
(using A→ B ' ¬A ∨B etc.), and then to push in all the negations according to de
Morgan’s laws.

• Converting to conjunctive normal form requires conversion to NNF, then the pushing
in of all disjunctions using the distributive laws (A ∨ (B ∧ C) ' (A ∨B) ∧ (A ∨ C)). You
can then simplify using:

– Delete any disjunction containing both P and ¬P .

– Delete any disjunction that contains another.

– Use (P ∨ A) ∧ (¬P ∨ A) ' A.

• A tautology will reduce to t under CNF, otherwise a falsifying truth assignment will be
visible by inspection. Similarly, a contradiction will reduce to f under DNF (disjunctive
normal form).

• A Hilbert style proof system works on the basis of a number of axioms, from which
you may deduce other tautologies using inference rules. If we can deduce A from the
assumptions S then S ` A. A proof system may have the properties:

1

– Soundness (everything you can prove is valid) – S ` A→ S |= A.

– Completeness (everything valid can be proven) – S |= A→ S ` A.

– Deduction – S ∪ {A} ` B → S ` A→ B.

• The sequent calculus follows a Gentzen style natural deduction system by defining
independant rules for each logical connective. A sequent is of the form A1, . . . , Am ⇒
B1, . . . , Bn, whereby if all the assumptions A are true, then one of the goals B must be
true.

– Basic sequent: A,Γ⇒ A,∆
(basic)

– Using a lemma:
Γ⇒ ∆, A Γ, A⇒ ∆

Γ⇒ ∆
(cut)

– Not rules:
Γ⇒ ∆, A

¬A,Γ⇒ ∆
(¬l) A,Γ⇒ ∆

Γ⇒ ∆,¬A (¬r)

– And rules:
A,B,Γ⇒ ∆

A ∧B,Γ⇒ ∆
(∧l) Γ⇒ ∆, A Γ⇒ ∆, B

Γ⇒ ∆, A ∧B (∧r)

– Or rules:
A,Γ⇒ ∆ B,Γ⇒ ∆

A ∨B,Γ⇒ ∆
(∨l) Γ⇒ ∆, A,B

Γ⇒ ∆, A ∨B (∨r)

– Implication rules:
Γ⇒ ∆, A B,Γ⇒ ∆

A→ B,Γ⇒ ∆
(→ l)

A,Γ⇒ ∆, B

Γ⇒ ∆, A→ B
(→ r)

3 OBDDs

• A decision diagram is a binary tree, with each node representing a variable, and the two
branches from each node signifying a true (solid line) or false (dotted line) assignment.
Each depth level in the tree corresponds to one boolean variable, and the leaves are the
values of the whole expression (0/1).

• An ordered binary decision diagram should contain no duplicate trees (e.g. there
should only be two leaves), and no redundant tests (i.e. if both branches from a node
lead to the same node).

• To produce an OBDD in canonical form efficiently, build up recursively, combining two
OBDDs on the basis of an operation. If Z and Z ′ are both canonical, and are being
combined as Z • Z ′ (where • is a generic operand):

– Either Z or Z ′ is t or f - trivial case; depends on operand.

– Z = if(P,X, Y) and Z ′ = if(P ′, X ′, Y ′):

∗ P = P ′ – return if(P,X •X ′, Y • Y ′).
∗ P < P ′ – return if(P,X • Z ′, Y • Z ′).
∗ P > P ′ – return if(P ′, Z •X ′, Z • Y ′).

• Hash tables can be used to optimise, so that comparisons are done by pointer equality (we
never build the same OBDD twice). The ordering of variables can be crucial to generating
a small OBDD.

2

4 First Order Logic

• Function symbols represent n-place functions, with a constant symbol being a 0-place
function. Variables range over a set of individuals. A term is a variable, a constant, or
a function whose arguments are terms.

• Relation symbols represent n-place relations (e.g. equality is a 2-place relation). An
atomic formula is a relation whose arguments are terms. A formula is built from
atomic formulæusing propositional operators and quantifiers.

• The universal quantifier can be used as ∀x.A (for all values of x, A holds). The
existential quantifier can be used as ∃x.A (there exists a value of x such that A holds).

• An interpretation I is a tuple (D, I), such that D is a non-empty set (the domain) and I
is a mapping of function and relation symbols to real functions and relations (the domain
is essentially the set of values that constants can be, functions can take as arguments and
return, and relations can talk about):

– Constant symbol c – I[c] ∈ D.

– Function symbol f (n-place) – I[f] ∈ Dn → D.

– Relation symbol R (n-place) – I[R] ⊆ Dn.

• A valuation V is a function from the variables to the domain D (it supplies the values
of free variables). IV [t] is the evaluation of the term t under the interpretation I and the
valuation V . The interpretation converts function, relation and constant symbols into real
functions, relations and constants, and the valuation converts the variables into actual
values.

• A formula A is satisfied under an interpretation I and valuation V (|=I,V A) if the
evaluation of its components satisfies the top-level connective (defined recursively). For
example, if A is a predicate P (t), then the evaluation of the term t (IV [t]) must be in the
set given by the predicate P (I[p]). For quantifiers we must extend the valuation to cover
the bound variable (if A = ∃xB, we have ∃m ∈ D. |=I,V{m/x} B).

• A formula A is satisfiable if |=I A for some I (i.e. ∃I.∀V . |=I,V A).

• A variable specified by a quantifier is bound within its scope. Bound variables may be
renamed (α-conversion). Free variables may be substituted for a term, using A[t/x], so
long as x is not bound, and t contains no bound variables (otherwise, rename the bound
variable(s)).

• The basic quantifier equivalence is that ¬(∀x.A) ' ∃x.¬A. A quantifier can expand its
scope so long as no previously free variables would become bound, and can decrease its
scope so long as no previously bound variables would become free.

• The sequent calculus rules for quantifiers (∀l and ∃r can create many instances, and ∀r
and ∃l hold provided x is not free in the conclusion):

– ∀ rules:
A[t/x],Γ⇒ ∆

∀x.A,Γ⇒ ∆
(∀l) Γ⇒ ∆, A

Γ⇒ ∆, ∀x.A (∀r)

– ∃ rules:
A,Γ⇒ ∆

∃x.A,Γ⇒ ∆
(∃l) Γ⇒ ∆, A[t/x]

Γ⇒ ∆,∃x.A (∃r)

3

5 Refutations in Propositional Logic

• A clause is a disjunction of literals ¬K1∨ . . .∨¬Km∨L1∨ . . .∨Ln. This can be written
as a set of literals, or as an implication (K1, . . . , Km → L1, . . . , Ln or L1, . . . , Ln ←
K1, . . . , Km). A Horn clause contains only one positive literal. An empty clause (2) is
a contradiction.

• To prove a propositional statement A, we get a contradiction from assuming ¬A. There
are two steps in this. Firstly, we negate the goal (A) and convert into CNF, which is a
conjunction of clauses. We then transform the clauses (preserving consistency) using one
of the methods below. If we arrive at the empty clause (contradiction), we have proven
A (the proof fails if we arrive at the empty clause set, as ¬A is satisfiable).

• The Davis-Putnam-Logeman-Loveland method:

– Delete all tautological clauses (containing P and ¬P).

– For each unit clause {L}, assign L to true (delete clauses containing L, and delete
occurrences of ¬L in other clauses).

– Look for a pure literal L (one for which no clause contains ¬L) and delete all clauses
containing P .

– If none of the above can happen, perform a case split on a literal - set the literal to
true (as in the case of a unit clause), and continue, but also seperately continue with
the literal set to false. If the empty clause is derived in both cases, then the original
clauses are inconsistent.

• The method of resolution (works on the basis that (B ∨ A) ∧ (¬B ∨ C)→ A ∨ C):

– The resolution rule:
{B,A1, . . . , Am} {¬B,C1, . . . , Cn}

{A1, . . . Am, C1, . . . , Cn}

– Special cases:
{B} {¬B,C1, . . . , Cn}

{C1, . . . , Cn}
{B} {¬B}

2

– The saturation algorithm works by initially labelling all clauses as passive. One
is selected (current), and becomes active. The current clause is resolved with all
active clauses to get some new clauses. These are then used to simplify the active
and passive clauses (e.g. deletion by subsumption of clauses that contain the new
clauses). The new clauses then become passive and the process repeats.

– Linear resolution yields a proof with a linear structure - each resolvent is a parent
clause in the next resolution step, and the other parent clause is one of the original
clauses.

6 Refutations in First Order Logic

• Conversion to prenex normal form is carried out by converting to NNF, then moving
the quantifiers to the front. A prenex formula is of the form Q1x1 . . . Qnxn.(A) where the
matrix (A) is quantifier free, and the prefix contains quantifiers Qi.

• Skolemization – taking a formula in prenex normal form, go through each existential
quantifier in turn, and assign the bound variable to a k-place function symbol, such that
there are k universal quantifiers preceding it. So ∀x1 . . . ∀xk.∃y.Q1z1 . . . Qnzn.A becomes
∀x1 . . . ∀xk.Q1z1 . . . Qnzn.A[f(x1, . . . , xk)/y].

4

• A Skolemized formula is converted into clauses by ‘ignoring’ the universal quantifiers,
and taking each term in the conjunction as a clause. Note that Skolemization preserves
consistency but not validity.

• The Herbrand universe H of a set of clauses S is the set of all terms that can be
written using just the constants and functions in S. It is defined by:

– H0 = C (C is the set of constants in S).

– Hi+1 = Hi∪{f(t1, . . . , tn)|t1, . . . , tn ∈ Hi∧f ∈ Fn} (Fn is the set of n-place functions
in S).

– H =
⋃
i≥0Hi.

• The Herbrand base HB is the set of all possible applications of the predicates in S to
H, defined as HB = {P (t1, . . . , tn)|t1, . . . , tn ∈ H ∧ P ∈ Pn} (Pn is the set of n-place
predicates in S).

• A Herbrand interpretation is a subset of HB. A set S of clauses is unsatisfiable iff
no Herbrand interpretation satisfies S.

• The Skolem-Gödel-Herbrand theorem states that a set S of clauses is unsatisfiable
iff there is a finite unsatisfiable set S ′ of ground instances (substituting all variables) of
clauses of S.

• A substitution is a finite set of replacements, θ = [t1/x1, . . . , tk/xk] where each variable
x is distinct, and is replaced by a term t not equal to x. Substitutions compose, such that
t(φ ◦ θ) = (tφ)θ (associative but not commutative).

• A substitution θ is a unifier of terms t1 and t2 if t1θ = t2θ. θ is more general than φ
if φ = θ ◦ σ, and is most general if it is more general than every other unifier.

• To perform unification, a term is represented as a binary tree of variables, constants and
pairs of terms:

– Constants do not unify with different constants or with pairs.

– The unifier of a variable x and term t is [t/x], unless x occurs in t.

– The unifier of two pairs, (t, t′) and (u, u′), is θ ◦ θ′ if θ unifies t and u, and θ′ unifies
t′ and u′.

• Resolution can take place on FOL clauses, using unification:

– Binary resolution:
{B,A1, . . . , Am} {¬D,C1, . . . , Cn}

{A1, . . . Am, C1, . . . , Cn}σ
provided Bσ = Dσ.

– Factorisation:
{B1, . . . , Bk, A1, . . . , Am}
{B1, A1, . . . Am}σ

provided B1σ = . . . = Bkσ.

• Prolog uses linear resolution on Horn clauses (left-to-right through clauses and clause
literals). It uses a depth first search (may not terminate even if a solution), and performs
unification without an occurs check (unsound).

• To use a Prolog-like method for first order logic in general, use contrapositives - treat a
clause {A1, . . . , Am} as m Horn clauses, on that basis that if all A except Ak are false,
then Ak must be true for the clause to be true (Ak ← ¬A1, . . . ,¬Ak−1,¬Ak+1, . . . ,¬Am).
Also, when proving P you can assume ¬P (extension rule).

5

• When reasoning about equality (reflexive, symmetric, transitive), you can use:

– Paramodulation rule:
{B[t], A1, . . . , Am} {t = u,C1, . . . , Cn}

{B[u], A1, . . . Am, C1, . . . , Cn}

7 Modal Logics

• If W is the set of possible worlds and R is an accessibility relation between the
worlds then (W,R) is a modal frame . The modal operators are:

– 2A – A is necessarily true.

– 3A – A is possibly true.

– ¬3A ' 2¬A.

• An interpretation I of a frame (W,R) maps propositional letters to a subset of W (i.e.
the worlds in which they are true):

– w ‖−A – A is true in world w.

– |=W,R,I A – w ‖−A for all worlds in W .

– |=W,R A – w ‖−A for all worlds in W and for all interpretations.

– |= A – A is universally valid (|=W,R A for all frames).

• A Hilbert-style proof system needs to be extended with:

– Distribution: 2(A→ B)→ (2A→ 2B)

– Necessitation:
A

2A

– Treat 3 as a definition (¬2¬A).

• Pure modal logic (K) can be constrained with the axioms:

– T – 2A→ A (reflexive).

– S4 – 2A→ 22A (transitive).

– S5 – A→ 23A (symmetric).

• Sequent calculus rules for S4 (where Γ∗ = {2B |2B ∈ Γ} and ∆∗ = {3B |3B ∈ ∆}):

– 2 rules:
A,Γ⇒ ∆

2A,Γ⇒ ∆
(2l)

Γ∗ ⇒ ∆∗, A

Γ⇒ ∆,2A
(2r)

– 3 rules:
A,Γ∗ ⇒ ∆∗

3A,Γ⇒ ∆
(3l)

Γ⇒ ∆, A

Γ⇒ ∆,3A
(3r)

6

8 Tableaux-Based Methods

• Working in NNF, we need only 6 connectives (∧,∨,∀, ∃,2 and 3) and one side to each
sequent:

– Basic sequent: ¬A,A,Γ⇒ (basic)

– Using a lemma:
¬A,Γ⇒ A,Γ⇒

Γ⇒ (cut)

– ∧:
A,B,Γ⇒
A ∧B,Γ⇒ (∧l)

– ∨:
A,Γ⇒ B,Γ⇒

A ∨B,Γ⇒ (∨l)

– ∀: A[t/x],Γ⇒
∀x.A,Γ⇒ (∀l)

– ∃ (x not free in conclusion):
A,Γ⇒
∃x.A,Γ⇒ (∃l)

– 2 (Γ∗ = {2B |2B ∈ Γ}): A,Γ⇒
2A,Γ⇒ (2l)

– 3:
A,Γ∗ ⇒
3A,Γ⇒ (3l)

• The proof system works by contradiction - assume the negation of the goal, and arrive at
the basic sequent (A ∧ ¬A).

• To use for first order logic we need to include:

– Unification – insert a new free variable with (∀l), then use unification at the end to
try to get to the basic sequent. Instantiating a free variable to a term updates the
entire proof tree.

– Skolemization – remove existential quantifiers so we don’t need to worry about in-
stantiating to a variable that could be unified to a term. Before Skolemizing, push
the quantifiers in (miniscoping), as this leads to shorter proofs.

7

