SMP 16-19 Mathematics - Revision Notes
 Unit 2 - Introductory Calculus

Rates Of Change

1. For a function, $y=f(x)$, then the gradient of that function is given as $\frac{d y}{d x}$.
2. For a linear function in the form $y=m x+c$ then $\frac{d y}{d x}=m$.
3. If u and v are linear functions of x, and a and b are constants, then $y=a u+b v$ is also a linear function of x and:

$$
\frac{d y}{d x}=a \frac{d u}{d x}+b \frac{d v}{d x}
$$

Gradients Of Curves

1. If a curve appears to be linear when you zoom in at a point, then it is 'locally straight' at that point.
2. The gradient of a curve at a point is equal to the gradient of the tangent to the curve at that point.
3. Differentiation is the process of obtaining $\frac{d y}{d x}$ for a given function $y=f(x)$.
4. Points on a graph can be given names:
a. Stationary points - where the curve has zero gradient.
b. Turning points - where the graph is a local maximum or minimum.
c. Points of inflection - where the gradient graph is a turning point and a stationary point.
5. In order to sketch a gradient graph, find the stationary points where the gradient is 0 , and then look to see whether it is positive or negative along the curve.
6. The gradient of a function $f(x)$ at a point $(a, f(a))$ can be estimated numerically by taking a small change in $x(\delta x)$:

$$
f^{\prime}(a) \approx \frac{f(a+\delta x)-f(a)}{\delta x}
$$

7. For a polynomial $y=a+b x+c x^{2}+d x^{3}$, then $\frac{d y}{d x}=b+2 c x+3 d x^{2}$.
8. Leibnitz notation states that the gradient of the function $f(x)$ can be written as $\frac{d}{d x}(f(x))$.

Optimisation

1. The gradient of a graph at appoint tells you what the gradient is like near that point.
2. Graphs of quadratics and cubics can be quickly sketched by:
a. Finding the y-intercept.
b. Considering the sign of the highest power of x to determine the shape for large $|x|$.
c. Finding the x-coordinates of any stationary points by solving $\frac{d y}{d x}=0$.
3. Calculus can be used to find the local maximum and minimum values of a quantity, by expressing the quantity as an equation in terms of another variable. Calculus can then be used to find maxima and minima for the equation, by solving $\frac{d y}{d x}=0$. This is the process of optimisation.

Numerical Integration

1. The area under a graph will represent a quantity, depending on the quantities of the axes. This is a definite integral.
2. The precise value of the area underneath a graph of $y=f(x)$, between $x=a$ and $x=b$ is shown as:

$$
\int_{a}^{b} f(x) d x
$$

3. The mid-ordinate rule uses a series of rectangles, with height of the midpoint of the curve, to estimate the area under the graph. This is shown as:

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x \approx \sum_{r=1}^{n} h y_{r} \\
& h=\frac{b-a}{n} \\
& x_{1}=a+\frac{1}{2} h \\
& x_{r+1}=x_{r}+h \\
& y_{r}=f\left(x_{r}\right)
\end{aligned}
$$

4. The trapezium rule uses a series of trapezia, joining point on the curve, to estimate the area under the graph. This is represented as:

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x \approx \sum_{r=1}^{n} \frac{1}{2} h\left(y_{r-1}+y_{r}\right) \\
& h=\frac{b-a}{n} \\
& x_{0}=a \\
& x_{r+1}=x_{r}+h \\
& y_{r}=f\left(x_{r}\right)
\end{aligned}
$$

5. For a parabola-type curve, then the trapezium rule will give an overestimate and the mid-ordinate rule will give an underestimate of the area under the curve.
6. For an inverted parabola-type curve, then the trapezium rule will give an underestimate and the mid-ordinate rule will give an overestimate of the area under the curve.
7. Integrals are defined to give negative areas below the x-axis. This is not wanted when calculating areas though, so:

$$
\int_{a}^{b} y d x=A-B
$$

Algebraic Integration

1. Any function $f(x)$ can have the function of its area expressed as $A(x)$.
2. For the polynomial $f(x)=a+b x+c x^{2}+d x^{3}$ then $A(x)=a x+\frac{1}{2} b x^{2}+\frac{1}{3} c x^{3}+\frac{1}{4} d x^{4}$.
3. The fundamental theorem of calculus states that $\frac{d}{d x}(A(x))=f(x)$.
4. For any differentiable function, f, then:

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)
$$

5. An indefinite integral is one without limits, and must always have a constant term, c, included. This is the constant of integration. In definite integrals this constant simply cancels out.
