SMP 16-19 Mathematics - Revision Notes

Unit 3 - Functions

Algebra Of Functions

1. Functions can be combined whereby $f g(x)=f(g(x))=\mathrm{g}(\mathrm{x})$ followed by $f(x)$.
2. The set of values for which a function is defined is the domain (i.e. x values), and the set of values that the function can return is the range (i.e. y values).
3. Many-to-one functions have more than one value in the domain giving one value in the range. It is impossible to have many-to-one functions.
4. The inverse of a function is denoted by $f^{-1}(x)$, and is only a function if $f(x)$ is one-to-one.
5. The graphs of a function and its inverse function have reflection symmetry in the line $y=x$.
6. Parameters are values in a function that can vary, but for any given function mapping x onto y they will act as constants (e.g. a, b, and c in $y=a x^{2}+b x+c$).
7. The image of $y=f(x)$ under a translation of $\left[\begin{array}{c}-p \\ q\end{array}\right]$ is $y=f(x+p)+q$.
8. The image of $y=f(x)$ after reflection in the y-axis is $y=f(-x)$.
9. The image of $y=f(x)$ after reflection in the x-axis is $y=-f(x)$.
10. If $f(-x)=f(x)$ then f is an even function (i.e. is symmetric about the y-axis).
11. If $f(-x)=-f(x)$ then f is an odd function (i.e. has rotational symmetry about the origin).

Circular Functions

1. The sine and cosine functions are periodic - they repeat themselves after a period.
2. $y=\sin (x+c)^{\circ}+d$ is obtained by a translation of $\left[\begin{array}{c}-c \\ d\end{array}\right]$.
3. $y=a \sin x^{\circ}$ is obtained by a one - way stretch parallel to the y-axis. a is the amplitude.
4. $y=\sin b x^{\circ}$ is obtained by a one - way stretch parallel to the x-axis. $\left(\frac{360}{b}\right)$ is the period.
5. $\quad y=\sin (b x+c)^{\circ}$ is obtained by a stretch of $\frac{1}{b}$ followed by a phase shift of $\frac{-c}{b}$.
6. For $\sin a^{\circ}=b$, then $a^{\circ}=\sin ^{-1} b$, i.e. the inverse function of \sin. The principle values for this will be given by the range of the function - i.e. $-90^{\circ} \leq \sin ^{-1} x \leq 90^{\circ}$.
7. For $\sin ^{-1}$ and $\cos ^{-1}$ the domain will be $\{x \in \mathrm{R}:-1 \leq x \leq 1\}$.
8. The trigonometric functions have an infinite number of solutions, and these can be found by looking at their periodic nature to find other solutions starting from the principle value.
9. $\tan x=\frac{\sin x}{\cos x}(\cos x \neq 0)$. Note that $\tan (-x)=-\tan x$.

Growth Functions

1. Growth is called exponential when there is a constant, called the growth factor, such that during each time interval the amount present is multiplied by this factor.
2. If the growth factor is less than 1 , then exponential decay will occur.
3. The laws of indices: $\begin{array}{lll}a^{0}=1 & a^{\frac{1}{m}}=\sqrt[m]{a} & a^{m} \div a^{n}=a^{m-n} \\ a^{-m}=\frac{1}{a^{m}} & a^{m} \times a^{n}=a^{m+n} & \left(a^{m}\right)^{2}=a^{m n}\end{array}$
4. The general growth function has an equation of the form $y=K a^{x}$ where K is the value of y when $x=0$, and a is the growth factor.
5. For $y=a^{x}, x=\log _{a} y$.
6. The laws of logs: $\begin{array}{lll}\log _{a} a=1 & \log _{a}\left(\frac{1}{a}\right)=-1 & \log _{a} m n=\log _{a} m+\log _{a} n \\ \log _{a} 1=0 & \log _{a} a^{x}=a^{\log _{a} x}=x & \log _{a}\left(\frac{m}{n}\right)=\log _{a} m-\log _{a} n\end{array}$
7. If $a>0$ then $\log a^{n}=n \log a$. So for $a^{x}=b, x=\frac{\log b}{\log a}$.

Radians

1. π radians $=180^{\circ}$.
2. A radian is the angle subtended by an arc of unit length at the centre of a circle of unit radius.
3. For a sector of a circle, radius r, with angle θ radians:

$$
\begin{aligned}
& \text { arc length } l=r \theta \\
& \text { area } a=\frac{1}{2} r^{2} \theta
\end{aligned}
$$

4. With x in radians:

$$
\begin{aligned}
& y=a \sin b x \Rightarrow \frac{d y}{d x}=a b \cos b x \\
& y=a \cos b x \Rightarrow \frac{d y}{d x}=-a b \sin b x
\end{aligned}
$$

The Constant e

1. $\frac{d}{d x}\left(e^{x}\right)=e^{x}$
2. $\frac{d}{d x}\left(e^{a x}\right)=a e^{a x}$
3. For natural logarithms (i.e. to base e), $\log _{e} x=\ln x$. This follows the same rules as the laws of logs.
4. $\frac{d}{d x}(\ln a x)=\frac{1}{x}$ and $\int \frac{1}{x} d x=\ln x$ for $x>0$.
5. For the logistic curve, $y=\frac{A}{1+K e^{-\lambda x}}$.

Transformations

1. Algebraic transformations:

Algebraic Transformation	Geometric Transformation
Replace x with $k x$	Stretch of factor $\frac{1}{y}$ from the y-axis
Replace y with $k y$	Stretch of factor $\frac{1}{x}$ from the x-axis
Replace x with $x+k$	Translation $\left[\begin{array}{c}-k \\ 0\end{array}\right]$
Replace y with $y+k$	Translation $\left[\begin{array}{c}0 \\ -k\end{array}\right]$
Replace x with $-x$	Reflection in y-axis
Replace y with $-y$	Reflection in x-axis
Interchange x and y	Reflection in $y=x$

2. For an ellipse of centre (p, q), of major axis $2 a$ and minor axis $2 b$, then the equation will be:

$$
\left(\frac{1}{a}(x-p)\right)^{2}+\left(\frac{1}{b}(y-q)\right)^{2}=1
$$

