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Abstract. There have historically been two approaches to performance mod-
elling. On the one hand, textual language-based formalisms such as stochastic
process algebras allow compositional modelling that is portable and easy to man-
age. In contrast, graphical formalisms such as stochastic Petri nets and stochastic
activity networks provide an automaton-based view of the model, which may be
easier to visualise, at the expense of portability. In this paper, we argue that we
can achieve the benefits of both approaches by generating a graphical view of a
stochastic process algebra model, which is synchronised with the textual repre-
sentation, giving the user has two ways in which they can interact with the model.

We present a tool, as part of the PEPA Eclipse Plug-in, that allows the compo-
nents of models in the Performance Evaluation Process Algebra (PEPA) to be
visualised in a graphical way. This also provides a natural interface for labelling
states in the model, which integrates with our interface for specifying and model
checking properties in the Continuous Stochastic Logic (CSL). We describe re-
cent improvements to the tool in terms of usability and exploiting the visualisation
framework, and discuss some of the general features of the implementation that
could be used by other tools. We illustrate the tool using an example based on a
model of a financial web-service application.

1 Introduction

It is often said that seeing is believing. Even though we know from biology that the
eye can be tricked in all manner of ways, most people will agree that being able to
see — or visualise — something with their own eyes adds great weight to their belief
in it. This is true in performance modelling, just as much as in the real world. Unlike
a computer program, which implements a specification and therefore can be tested for
correctness, a performance model is often a specification in and of itself. This leads to a
big problem — how do we convince ourselves that the model we have written is really
the same as the model we intended to write?

There are many approaches to performance modelling, but the use of language-
based formalisms such as stochastic process algebras [16, 19] have been particularly
successful. In addition to being natural for computer scientists, who are used to pro-
gramming in linear, text-based languages, they have the advantage of portability — we



do not require a special tool to view or edit the model. A disadvantage, however, is that
it can be difficult to visualise the behaviour of the model — for example, a small typo
in the model can lead to strange and unintended behaviour, but can easily go unnoticed.

An alternative approach is to use graphical formalisms for performance modelling,
such as stochastic Petri nets [3] and stochastic activity networks [20]. Since these are
automata-based formalisms, it is easy to visualise the structure and behaviour of com-
ponents in the model. Whilst several highly successful tools make use of such for-
malisms — for example PIPE [4] and Mobius [11] — they suffer from some limitations.
Most notably, portability of the model between tools, and flexibility of the tool, since
the interface may be too restrictive or cumbersome for advanced users, compared to the
freedom of a text editor.

The contribution of this paper is to bring these two approaches together, in a tool
that supports two different views of the same model. We present an extension to the
PEPA Eclipse Plug-in [30] that allows performance models in the Performance Evalu-
ation Process Algebra (PEPA) [16] to be presented graphically. This is useful not only
for visualising the model, but also as an intuitive interface for abstracting it, and for
specifying performance properties we would like to verify.

Since we have already presented a summary of the analysis features of our tool
in [24], implementing the compositional abstractions developed in [25,26], it is impor-
tant to clarify the purpose of this paper. Our focus here is not on the back-end of the tool,
but on the novel user interfaces that we have developed. We present some significant
improvements in features and usability compared with [24], and moreover describe the
implementation details of our front-end, to allow the principles to be applied to other
tools based on stochastic process algebras. Figure 1 shows a screenshot of the plug-in.

We begin in Section 2 by introducing the PEPA language, along with a running
example based on a financial web service case study. We then motivate the need for
visualisation of PEPA models in Section 3, before introducing the visualisation features
of the PEPA Eclipse Plug-in. In Section 4, we describe how PEPA models can be vi-
sualised in a graphical way, along with how this interface can be used for specifying
abstractions of the model, and for labelling states. In Section 5, we then present the
interface for constructing performance properties (in the Continuous Stochastic Logic
(CSL) [2]), which ensures that the user can only enter syntactically valid properties. We
discuss implementation details in Section 6, before considering related work in Sec-
tion 7 and concluding in Section 8.

2 Modelling in PEPA

The Performance Evaluation Process Algebra (PEPA) [16] is a widely used language
for performance modelling and analysis, which allows models to be built composition-
ally. PEPA models are built out of components, which run in parallel and can perform
activities. An activity (a,r) is a pair consisting of an action type a € A, and a rate
r € R>o U {T}. The rate parameterises an exponential distribution that describes the
duration of the activity. The special rate T denotes a passive rate, meaning that another
component must determine the rate of the activity. The syntax of PEPA is as follows:

Cs =(a,r).Cs | Cs+Cs | A
Cy:=Cs | Cu B Cuy | Cu/L
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Fig. 1. The PEPA Eclipse Plug-in, showing the editor and the abstraction view

Here, we call C's sequential components, and C'y; model components. A PEPA model
is constructed by defining a collection of sequential components, along with a model
component called the system equation, which describes the initial configuration of the
model. The PEPA combinators are as follows:

Prefix (a,7).C" The component can carry out an activity (a, r) to become C.

Choice C1 + C3 The component may behave as either C or Cs, according to
the first that completes an activity (the race condition).

Cooperation C |>§ C5 C17 and C5 synchronise over the actions in L (the cooperation
set). For activities whose type is not in L, the two compo-
nents proceed independently. Otherwise, they must perform
the activity together, at the rate of the slowest component.

Hiding C/L The component behaves as C, except that activities with an
action type in L are hidden, and cannot be synchronised over.

Constant A2 C  The name A refers to component C.

PEPA has an operational semantics, which maps a model onto a labelled multi-transition
system, from which a continuous-time Markov chain (CTMC) is derived [16]. If we
want to operate on the underlying CTMC of a model in a compositional way, however,
it is more useful to use an alternative semantics based on a Kronecker representation.
This was first introduced in [17], and developed further in [25,26]. It was proven in [25]
that the reachable state space of the CTMC given by the Kronecker semantics is iso-
morphic to that given by the original semantics of PEPA in [16].



To specify the CTMC of a PEPA model in a compositional way, we first need to
define the notion of a CTMC component:

Definition 1. A CTMC component is a tuple (S, r, P, L), where S is a finite non-empty
set of states, v : S — R>oU{ T } assigns a rate (or T) to each state, P : Sx.S — [0, 1]
assigns a probability distribution over S to each state s € S, and L : S — AP isa
labelling function (AP is a finite set of atomic properties). We require for all s € S that
Yives Pls,s') = 1.

Note that if all the rates are active, a CTMC component is just a standard CTMC.

We construct a PEPA model by composing CTMC components. To do this, we use
two composition operators, ® and ©, which correspond to synchronised and indepen-
dent parallel composition respectively. For CTMC components My = (Sy,r1, P, L1)
and My = (Sa, 13, Py, Lo), these are defined as:

My & My = (51 x Se,min{ry,r2 }, Pr @ Ps, Ly X Lg)

Ml © M2 = (517T17P17L1) ® (52,7"%—71-,.[/2) + (Sl,’l"%—,I,Ll) ® (SQ,'I"Q,PQ,LQ)

where we define min{ r1, 7o }(s1, $2) = min{r(s1),72(s2) }, (L1 X La)(s1,82) =
Li(s1) N La(s2). rr(s) = T for all s, and I is the identity matrix (I(s1,s2) = 1if
$1 = s2 and 0 otherwise). ® is the standard Kronecker product of two matrices [21].

For two CTMC components My = (S, ry, Py, L) and My = (S, r9, Py, L) with the
same state space S and labelling function L, the addition operator used in the previous
equation is defined as follows:

r T
My + M; = (S, T+ gy ——— Py 4 —— P2,L)
r1+ 1o r1+ 1o

where we define (11 +72)(s) = 71(s) +r2(s), 7555 (s) = %, ie{l1,2},
and (rP)(s1, s2) = 1(s1)P(s1,52).

The Kronecker semantics of PEPA is as follows. For a PEPA sequential component
C, we use the operational semantics in [16] to derive a CTMC component: [C|7EF4 =
(S,r, P, L). Technically, the labelling function L is not given as part of the model, but
we will show how to define it using the PEPA Eclipse Plug-in, in Section 4. We can
similarly define [C]PPP4 = (S, r,, P,, L) to be the CTMC component over the same
state space .S, where only the contribution of activities of action type a is considered (if
a state s cannot perform an activity of type a, r,(s) = 0).

Definition 2. The CTMC induced by a PEPA model C is:

1= ) ICL

acAct(C)

where Act(C) is the set of all action types that occur in C (both synchronised and
independent), and [C],, is as follows:

[C]a = [C]PEPA if C is a sequential component

[[Ci]a®[Co]a ifac L
[C: DX Cs], = { oL o [[Cz]]a et
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+ (decline, rinform ). Customer_Deciding
Customer_Deciding = (reapply, Treapply X to). Customer_Entering

+ (reapply, Treapply X t1).Customer_Idle
Service_Idle = (uploadData, rypicad).Service_Validating
Service_Validating = (validateData, rvaiidate )-Service_Sending
Service_Sending = (sendBank, rsendBank ). Service_Idle
Bank_Idle = (sendBank, rsendBank )- Bank_PreDecide
Bank_PreDecide = (predecide, Tpredecide X Po)-Bank_Approve

+ (predecide, Tpredecide X p1)-Bank_Decline

+ (predecide, rpredecidze X p2).Bank_Employee
Bank_Employee = (decide, I'decide X qo).Bank_Confirm

+ (decide, T decide X q1).Bank_Decline
Bank_Confirm = (decide, T decide X S0).Bank_Approve

+ (decide, rgecide X $1).Bank_Decline
Bank _Approve = (approve, rinform ). Bank_Idle
Bank_Decline = (decline, rinform ). Bank_Idle

Customer_Idle = (Service,ldle B> Bandele)
{ uploadData, approve, decline } { sendBank }

Fig. 2. A PEPA model of a financial web service application

Example: As a running example for the remainder of this paper, consider the PEPA
model in Figure 2. This is a model of a financial services case study from the SEN-
SORIA project — a five-year EU-funded project on software engineering for service-
oriented computing [23]. The project brought together a large number of European
universities and research centres together with four industrial partners, one of whom
was a European bank engaged in business-to-business operation. The bank explained
the process by which loans are awarded to businesses: the workflow must be reliable, to
guard against fraud, and also meet legal constraints on fiscal and monetary transactions.

The PEPA model presented here describes this workflow in terms of a customer us-
ing a service portal. Through this, the customer interacts with the bank, where employ-
ees approve or decline loans subject to managerial approval. Structurally, the model is
a typical idiomatic PEPA model, with a small number of sequential components, which
may be replicated to make larger instances of the problem. These sequential compo-
nents are brought together in a parallel composition, requiring them to co-operate on
shared activities (such as uploadData) and to proceed independently on other activities
(such as the decide activity, which approves the loan request).

Some components have a relatively complex workflow with multi-way branching
and loops to different entry points in the workflow. Each component is cyclic so that
the model has a meaningful steady state solution, and describes an unending process
with infinite behaviour. The visualisation capabilities of the PEPA Eclipse Plug-in were



very helpful in enabling us to communicate the meaning of the model to partners in the
project who were not familiar with process calculi and stochastic processes.
A more complete description of the SENSORIA Finance Case Study appears in [9].

3 The Argument for Visualisation

The approach adopted in this paper for visualising PEPA models differs from the ap-
proach taken in graphical modelling formalisms such as Petri nets and Stochastic Activ-
ity Networks (SANs), where the visual representation and layout of the model is central.
In these formalisms, the modeller most often creates a manual layout of the model —
this is the case for the PIPE Petri net editor [4] and the SAN editor of Mébius [11].
Other, mostly textual, representations of the model, such as XML or program source
code, are generated from the graphical representation. Some tools for stochastic pro-
cess algebras — most notably CASPA [22] and Aemilia [6] — have also used this
approach to provide a graphical formalism as an alternative to the textual language.

In contrast to this, we wanted the textual representation of the PEPA model to be
considered as the model source — having primary importance — and for graphical rep-
resentations to be automatically derived from this and have secondary importance. The
idea is to use automatic layout algorithms to generate a first attempt at a layout, which
can then be manually improved by the user according to their aesthetic sensibilities and
tastes. The manually improved version is automatically saved so that it does not need to
be redone after every edit. We believe that this is a good pragmatic compromise between
a fully manual and a fully automatic approach to visualisation.

It is important to us that the graphical representation of the PEPA model should be
based on the components that PEPA uses to structure large models. The visualisation
of the model is only helpful if the user can meaningfully interpret the visualisation.
From earlier work [8], we have seen that each component of the model is a coherent
unit of behaviour, and we believe that using this to structure the visualisation is more
comprehensible than looking at the underlying CTMC. In other words, if we show the
synchronisation between components by expanding out the model, then the graphical
representation becomes too large, and difficult to understand. Finding a good solution
to this problem is an important aspect of future work.

Given this component-level perspective, it is important that we visualise both the
structural and stochastic information in each component. This means that rates must
play an essential part in the visual representation, so that we can detect errors in rate
definitions, such as placing the decimal place in an unintended position. Similarly, we
should have some way of noticing if we incorrectly declare an activity to be passive
rather than active. Our solution is to use different colours to distinguish active and
passive activities, and different shades of colour to distinguish fast and slow activities.

4 Visualisation of PEPA Models

The PEPA Eclipse Plug-in allows us to edit and analyse PEPA models using the popular
Eclipse framework [12]. This separates the user interface into two main parts. The editor
window is where the PEPA model is displayed, and can be edited. This is basically a
text editor, with additional features such as syntax highlighting and identification of
parse errors. Alongside the editor are a number of views, which are used to display
information about the model, and as an interface for invoking analyses of the model.
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Fig. 3. The abstraction view

This can be seen in Figure 1, where the editor is positioned centrally, with the views
below it and to the right. In this section, we will look at the abstraction view (shown
at the bottom of the screen), which has a graphical interface for viewing PEPA models,
built on top of the Eclipse Graphical Editing Framework (GEF) and the Zest toolkit.

The idea of visualising PEPA models is not a new one, and was first proposed
in [29]. Since PEPA is a compositional language, we can view each component in
the model independently, as an automaton whose transitions are labelled by activities.
In [29] it was suggested that we can do this by displaying the derivation graph of a
component. We use a slightly different approach based on the Kronecker representation
described in the Section 2 — this is entirely equivalent in terms of what the user sees,
but the underlying data structure is more versatile, as we shall discuss in Section 6.

Figure 3 shows the abstraction view, displaying the Bank component from Figure 2.
There are four essential features of this view:

1. Visualising: In the main panel of the view is a series of tabs, which display an
automaton for each sequential component in the PEPA model. This allows a fast
visualisation of the component as described, so that certain errors in the model can
be seen immediately — for example, if the component is supposed to cycle between
a number of states, we expect to see a cyclic automaton.

Since an individual PEPA component typically has a small number of states, its
automaton will usually be small enough to display clearly. However, for larger or
more complicated components, we have a feature to display only certain states. Ei-
ther we can manually select the states we are interested in, right-click, and select
‘Only show selection’, or we can right-click on a blank area and select ‘Choose
states to select...”, which offers a dialog box where we can select states by name.

Active and passive transitions have different colours (red and green respectively)
so that they can be more easily distinguished. Moreover, we display active transi-
tions in varying shades of red, ranging from bright red (for the fastest transitions)
to black (for the slowest transitions). From a drop-down box, we can select whether
to label the transitions with their activities — either for all transitions or for only
certain transitions (such as the passive ones, or the fastest active ones).



2. Labelling: On the right-side of the view is a list of atomic properties, which can
be referred to in performance properties. These can be thought of as labels, which
identify a set of states in the model using a more human-readable name.

To define a new label, we first select the states that we want to label, and then right-
click in the atomic properties list, and select ‘New property’. We can change which
properties a state is labelled with by right-clicking on it, which gives a list of prop-
erties that can be selected, or deselected. Clicking on a state will display (in the
atomic properties list) which properties are true or false, and clicking on a property
selects all the states with that label. We specify atomic properties compositionally.

3. Abstracting: In order to analyse the model, we may want to reduce its size by first
aggregating certain states. In the back-end of the tool, compositional abstraction
techniques based on abstract Markov chains [25] and stochastic bounds [26] are
used to construct an abstract model that is passed to the model checker for analysis.
The front-end interface for this is very simple — the user simply has to select the
states they want to aggregate, and click the ‘Aggregate’ button. These states can
subsequently only be selected as a unit, and moved (or labelled) together.

4. Exporting: We allow the model to be exported to the input format of the MRMC
model checker [18]. If the model has not been abstracted, the output is a CTMC
(consisting of a . Lab and . tra file), otherwise the output is a CTMDP (a . 1lab
and a . ctmdpi file). This means that MRMC can be used as an alternative to the
in-built model checker in the plug-in. Note, however, that MRMC currently only
supports time-bounded reachability properties for CTMDPs, whereas the in-built
model checker supports all the CSL operators>.

When we create a new PEPA model, or load a new model that we have not worked
with before, the abstraction view uses an automated layout algorithm from the Zest
toolkit. The idea is to provide a rough initial layout that can be changed by the user to
one of their liking. Activity labels are automatically placed so that multiple transitions
between two states do not overlap with one another. The layout information and defined
properties are automatically saved (to an XML format) by the tool, so that if we return
to a model in the future, the abstraction view looks precisely as we left it.

An important feature of the abstraction view is that it is robust with regard to minor
changes to the model. For example, if we add a new component in the system equation,
the layout information for the existing components is preserved. If we add a new state
to a sequential component, the node appears in the default location (the top-left corner
of the view), but the other nodes remain in their correct position. If the tool detects a
new state for which it has no information, it displays a warning, and sets all atomic
propositions to be true for that state, by default.

5 Constructing Performance Properties

There are a number of ways to describe and analyse performance properties of a PEPA
model. Sometimes, we want to directly analyse a simple property, such as the steady

3 Except the time-bounded next operator, since this is not preserved after uniformisation.



state probability of a set of states, or the throughput of a given action. In this case, the
plug-in provides a simple interface for obtaining such information. We often want to
ask more sophisticated questions, however, and so we need a more powerful language
to describe it. The PEPA Eclipse Plug-in supports two ways of doing this: stochastic
probes [10], which use a regular-expression syntax to query the passage time distribu-
tion between events, and Continuous Stochastic Logic (CSL) [2], described here.

There are two types of CSL properties: state properties ¢, which concern a state in
the model, and path properties (, which concern a sequence of states (a path) in the
model. Together, these allow the logic to specify many useful performance properties,
which can be analysed using a model checker. The plug-in has a built-in CSL model
checker but, as described in the previous section, it is also possible to export to MRMC.

The syntax of CSL supported by the PEPA Eclipse Plug-in is as follows (where we
include derived operators):

Pu=tt | £f | a | PAD| OV | S=D | ~D | Sap(®) | Pap(y)
p=Xd | dU' P | FIo | G
where < € {<,>},a € AP,p € [0,1], and I = [a,]] is a non-empty interval over
the reals, such that a,b € R>o U { oo}, and a < b.

Rather than give the formal semantics of CSL in this paper, we will consider the

five types of state property that we most commonly construct:

Steady State S>,(®P) In the long-run behaviour of the model, does
@ hold with probability at least p?

Next P>p(X D) In the next state, does ¢ hold with probability
at least p?

Until Psp(P1 U <t ¢,) Will &5 become true no later than time ¢, and

@, hold at all times until this point, with prob-
ability at least p?

Eventually P> ,(F<! @) Will @ become true no later than time ¢ with
probability at least p?

Globally Psp(GSt @) Will @ always be true until time ¢ with proba-
bility at least p?

At the top level, we also support quantitative CSL properties, of the form S—(®) and
P—2(¢), which return the actual probability of the given steady state or path property,
rather than comparing it to a fixed value. These are very useful in practice.

In general, since we support model checking of abstracted models (i.e. CTMDPs in
addition to CTMCs), we use a three-valued variant of CSL. That is to say, a property
can be true, false, or maybe. Similarly, a quantitative property returns an interval of
probabilities — so, if we get [0.1,0.3], we know that the probability in the original
model is between 0.1 and 0.3. If a qualitative property returns ‘maybe’, or a probability
interval is too wide, we should experiment with different abstractions to achieve better
results. The theory underlying the tool [25,26] guarantees the accuracy of the model
checker, but the precision depends on the choice of abstraction.
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To specify CSL properties and perform model checking, the plug-in provides a
model checking view. This is basically a table of CSL properties, which can be verified
using the internal model checker. We allow saving and loading of properties, in an XML
format, so that the same properties can be shared between different models. The most
interesting feature, however, is our novel interface for constructing CSL properties.

There are a number of approaches when it comes to helping a user specify a per-
formance property. One approach is to provide a graphical, user-friendly language for
specifying properties, such as performance trees [28]. Another is to have a simple dialog
box where the user types in the property in a logic like CSL, such as in PRISM [19].
Our approach lies somewhere in between, in that we do expect the user to be expert
enough to understand CSL, but we do not expect them to know the specific syntax of
the tool — the interface supports the user by providing them with the correct syntax.

Figure 4 shows the CSL editor, where the property P, (F<°C “Approving”) is be-
ing entered for the example in Figure 2 — querying the probability that a loan is ap-
proved within 50 time units. We cannot type the property by hand, but instead are guided
by the enabled buttons, corresponding to CSL terms that can be used in the current po-
sition (there are keyboard shortcuts for experienced users). When we click on part of
the property, the editor determines which term we clicked on, and highlights the entire
term. We then have the option to substitute it with another term — if no term has yet
been entered, or we delete a term, the placeholder ‘<>’ is seen. Numerical parts of the
property can be edited directly, but will only be accepted if syntactically correct.

The most useful feature of the editor is that it is linked to the abstraction view.
When we click on the ‘Atomic Property’ button, we see a list of all the labels that have
been defined for the model. This avoids us having to switch back and forth between the
two views. Because the underlying data structures are shared between the two views,
if we change the name of an atomic property in the abstraction view, it is immediately
updated in the model checking view. The plug-in prevents us from deleting an atomic
property if it is in use, and displays an error message if we try to do so.

Since we can load CSL properties, the plug-in also has a built-in parser for CSL.
Only syntactically correct properties will be loaded, and if any atomic properties are
used that were not defined, a warning is given and they are replaced with ‘true’.
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Fig.5. A UML class diagram of the main classes involved in visualisation in the plug-in

6 Implementation Details

The key idea behind the implementation of the visualisation, abstraction, and model
checking functionality of the plug-in is the Kronecker representation described in Sec-
tion 2. We partially derive the state space of the PEPA model when it is parsed, con-
structing the CTMC component for each sequential component and action type. We
only derive the state space of the model when we perform model checking on it —
it should be noted that we do this by exploring the reachable state space, and not by
explicitly performing the matrix operations described in Section 2!

Figure 5 gives an overview of the important classes used by the visualisation part
of the plug-in. The most important point is that there are two data structures describ-
ing the PEPA model. KModel is the back-end data structure, used by the abstraction
and model checking engines, and stores the Kronecker representation of the model. A
KModel contains a number of KComponents, which in turn contain a number of
RateMatrix objects — one for each action type in the model. A RateMatrix con-
sists of a vector of rates and a matrix of probabilities. Essentially, it corresponds to a



CTMC component, although we have to be a little careful about the mapping between
states in the component and indices in the matrix (omitted from the UML diagram).

KDisplayModel is the front-end data structure, used by the abstraction and model
checking views in Eclipse. A KDisplayModel object contains a number of com-
ponents (KDisplayComponent objects), which contain themselves a collection of
states (KDisplayState) and transitions (KDisplayTransition)— animplicitly-
linked graph data structure, as opposed to a matrix. This makes it easier to map onto a
Zest Graph object in order to actually draw the graph in the abstraction view.

To understand this separation, it is necessary to explain the structure of the tool. The
PEPA Eclipse Plug-in is quite a complicated piece of software, but the most important
functionality is separated into two modules (called OSGi bundles) — pepa, which
contains all the back-end functionality such as parsing, model checking, and CTMC
solvers, and pepa.eclipse.ui, which contains the front-end Eclipse functionality,
including the PEPA editor and the various views. Only certain classes in the pepa
bundle are made externally visible, to minimise the coupling between different bundles.
This means that pepa.eclipse.ui only has access to the classes it actually needs,
and is unaware of the internal data structures for the Kronecker representation.

This separation of concerns differs from the standard model-view-controller design
pattern, in that the two representations of the model are static. Whenever we mod-
ify the PEPA model, we need to parse it again, and this creates a new KModel and
KDisplayModel. This is necessary, because a small change in the source file can
result in a radically different model. It does not, however, mean that all the information
from the previous version of the model is lost — information such as labels and the
layout of the graphical view are stored by the plug-in in an XML file, which is then
re-loaded so that the data can be re-attached to the model as closely as possible.

Atomic properties are managed through a KDisplayPropertyMap object, which
is associated with a KDisplayComponent. A new atomic property is created by a
request to the PropertyBank. This creates a new At omicProperty object, which
records which states (in each component) are labelled with the property*. This is hidden
from the abstraction view, and must be accessed through a KDisplayPropertyMap.

Because CSL properties are managed at the level of the entire model (rather than for
each component), they are created and modified through KDisplayModel. Again,
the PropertyBank is responsible for storing the properties (which are instances
of a subclass of CSLAbstractStateProperty), and keeps a link between the
abstract syntax of the CSL property, and the actual atomic properties. The abstrac-
tion and model checking views in Eclipse register with the PropertyBank (through
KDisplayModel) as a listener (implementing IPropertyChangedListener).
This ensures that they are notified of any changes, so that the abstraction and model
checking views remain synchronised with one another.

7 Related work

Our visualisation has taken the textual representation of a PEPA model as the primary
source in order to be compatible with other modelling and analysis tools that process

* Atomic properties are compositional, which means that a state in the model satisfies an atomic
property if and only if each sequential component is in a state that is labelled with the property.



PEPA models, such as IPC [5] and GPA [27]. The PEPA language has enjoyed a wide
range of tool support from the PEPA Workbench [15] to PRISM [19] and the PEPA
Eclipse Plug-in, which influences decisions about matters such as visualisation.

The PEPA Workbench contained a single-step navigator, which provided a visual-
isation of the PEPA model for behavioural debugging (i.e. finding deadlocks or dead
code where actions of the model can never fire). This did not show any quantitative
information, however, and so did not help modellers to work out why a probabilistic
model-checking formula fails to hold, when they think it should.

Other attempts to add a graphical dimension to PEPA have included the DrawNET
editor, which allowed the user to create a PEPA model by editing it graphically [14].
DrawNET provides graphical editors for both the parallel composition language of
PEPA and the sequential component sub-language. It has also been used to build a
graphical interface for the process algebra Aemilia [6].

Other stochastic process algebras also have graphical editors. CASPA [22] uses the
Eclipse Graphical Modelling Framework (GMF) [13], which is built on top of GEF, to
provide an interface for constructing and editing models. This allows the textual repre-
sentation of the model to be exported from, and imported into the graphical represen-
tation, but the two representations are stored separately. This is in contrast to the PEPA
Eclipse Plug-in, where we only store the textual representation of the model — gener-
ating the graphical representation whenever the model is loaded — which removes the
problem of keeping the two representations synchronised. It should be noted that our
interface is built on top of GEF directly, and not GMF — this is so that we can make
the interface cleaner and simpler, since we do not currently support editing.

A more general modelling tool with a graphical front-end is TAPAs [7]: a didac-
tic tool for the analysis of process algebra. The idea was to develop a framework in
which new process algebras can be easily added. At present TAPAs implements CCSP
(a process algebra with features of both Milner’s CCS and Hoare’s CSP) and PEPA.

8 Conclusions

Both textual and graphical performance modelling formalisms have their advantages
and disadvantages, but the use of one does not necessarily have to preclude the other.
PEPA is a highly successful language-based approach to performance modelling, and
yet there are great benefits from being able to visualise a model in a more graphical
way. To this end, we have created a novel interface for visualising PEPA models, as
part of the PEPA Eclipse Plug-in. The latest version is available for download from
http://www.dcs.ed.ac.uk/pepa/tools/plugin.

In future work, there are many additional ways in which we can increase the func-
tionality of the plug-in. One idea would be to allow the model to be edited via the
graphical interface, rather than just being viewed passively — for example, by making
use of the editing functionality of GMF. This would require us to continually maintain
the synchronisation between the editor and the abstraction view, but would lead us in
the direction of a truly combined textual/graphical approach to modelling. Furthermore,
there is a great deal of scope for advanced visualisation, such as illustrating how com-
ponents interact with one another, and animating the dynamic behaviour of the model.

To summarise, visualisation is a powerful tool in performance modelling, even for
experienced modellers, as it allows a better understanding of the model — particularly



in the face of sophisticated transformations such as state-space aggregation and other
abstraction techniques. To the best of our knowledge, this is a unique feature of our
modelling tool, and we hope that it will be a benefit to the performance modelling
community, and provide inspiration for similar features in other modelling tools. Seeing
may not always be believing, but it certainly helps in understanding!
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