
Activity-Guided Abstraction of PEPA Models

Michael J. A. Smith∗

M.J.A.Smith@sms.ed.ac.uk

Laboratory for Foundations of Computer Science
University of Edinburgh

Edinburgh, United Kingdom

Abstract

Stochastic process algebras such as PEPA allow complex stochastic models to be described
in a compositional way, but this leads to state space explosion problems. To analyse such
models, aggregation is often performed at the state level, resulting in an abstract model that
safely approximates the original with respect to certain properties. Abstract Markov chains
and stochastic bounds can be used to safely approximate transient and steady state properties
respectively.

A vital part of any abstraction is to specify which states to aggregate. In this paper, we
look at how aggregation of PEPA activities can be used to guide aggregation of states in the
underlying Markov chain.

1 Introduction

Practical performance modelling often deals with models that are too large to analyse directly. This
is particularly the case when we use compositional formalisms such as the Performance Evaluation
Process Algebra (PEPA) [2], for which the size of the underlying Markov chain can grow exponentially
in the number of components. In these situations, we need to abstract the model in such a way that
it becomes small enough to analyse, ensuring that we preserve any properties of interest.

This preservation usually cannot be exact, and so we introduce the notion of a safe approximation –
if the abstract model satisfies or violates the property then so does the original model, but there is a
possibility that we cannot determine either of these cases for the abstract model. As an example, since
we can determine the probability distribution over traces in a CTMC, we can test whether it satisfies
a transient property (i.e. a collection of traces) with at least a certain probability. For example, that
there is at least 99% chance that the system will be operational within 100ms of being switched on.
In the abstract model, we may have uncertainty about the trace probabilities, and instead have an
interval [p1, p2] that contains the actual probability. Hence when verifying the same property, we may
determine that the chance of being operational within 100ms is [0.9, 1.0], which means that we do not

know that the property holds with at least a 99% probability, but we do know that it holds with at
least a 90% probability.

A common way of reducing the size of a Markov chain is to aggregate certain states that have
similar behaviour. Such an aggregation can be described by an abstraction function α : S → S♯,
where S is the state space of the original Markov chain, and S♯ that of the abstract system. In
general, the abstract system will not be Markovian, but if it is, the Markov chain is said to be

∗This work was funded by a Microsoft Research European Scholarship

1



ordinarily lumpable [4]. This property means that the transitions out of each abstract state are
independent of which concrete state we are in. More formally, for a CTMC defined in terms of a
rate function r : S → R

+, describing the exit rate of each state, and a probability transition matrix
P : S × S → [0, 1], then it is ordinarily lumpable with respect to α if for all states s, s′ ∈ S such that
α(s) = α(s′), then for all s♯ ∈ S♯:

∑

{t|α(t)=s♯}

r(s)P (s, t) =
∑

{t|α(t)=s♯}

r(s′)P (s′, t)

If this condition holds, then the steady state solution of the aggregate CTMC is equivalent to solving
the original, and then aggregating it.

Most of the time, however, we want to abstract CTMCs that are not lumpable, and so we need
an abstraction. The following are two ways of doing this, depending on whether we are interested in
transient or steady state properties of the chain:

1. Determine the maximum and minimum possible transition rates between the abstract states.
We then use a modified model-checking algorithm to verify properties over the set of Markov
chains we defined. This is the approach of abstract Markov chains [1, 3].

2. Modify the original CTMC by altering the rates so that the abstraction becomes lumpable. In
order for this to be useful, we ensure that the modification yields an upper (or lower) bound to
the property that we are interested in. This is the approach of stochastic bounds [6].

Since this is not the primary focus of this paper, we will not elaborate any further on the details
of the above, except to comment that they can both be applied compositionally to PEPA, with slight
modification [5]. Our aim here is to investigate ways in which we can choose the abstraction function
α. Rather than describing the sets of states that we want to aggregate, it often makes more sense to
do so in terms of activities, and in doing so take advantage of the structure of the model. The purpose
of this paper is to motivate this further, and present an approach to activity-guided abstraction.

2 Activity-Guided Abstraction

In a structured formalism such as PEPA, it is natural to characterise the states by what they can
do, since it makes more sense to aggregate similar states than ones with very different behaviour. In
particular, we are keen to aggregate compositionally, looking at each sequential component separately.
Not only is this more natural than working with the state space of the entire system, but it allows us
to exploit the structure of the model more readily.

Consider a sequential component with state space S, and activities with action types in Act . If
A ⊆ Act is a set of action types, then we define S(A) ⊆ S to be the set of states in the component
that can perform activities of every action type in A:

S(A) = {s ∈ S | ∀α ∈ A. ∃s′. s
α
−→ s′}

For example, S({α, β}) is the set of states that can perform both activities of type α and β. For a
state s ∈ S(A), we say that s has a signature A.

In itself, this form of state identification has limited use, since it requires all concerned action

2



types to be possible from every state in the aggregation. Consider the following simple example:

Server = (requestA,⊤).(process , rA).(replyA, rnet).Server

+ (requestB,⊤).(process , rB).(replyB, rnet).Server

+ (requestC ,⊤).(process , rC).(replyC , rnet).Server

ClientA = (requestA, rnet).(replyA,⊤).ClientB

ClientB = (requestB, rnet).(replyB,⊤).ClientC

ClientC = (requestC , rnet).(replyC ,⊤).ClientA

System = Server ⊲⊳
{requestA,B,C,replyA,B,C}

ClientA

Here, we have a server that can respond to three different types of request from the client, each of
which has a different rate of processing. A sensible abstraction of the model would be to combine
the different request types into one, hence throwing away any detailed information. If we take A =
{requestA, requestB, requestC}, then S(A) is useless for abstracting the client, since each state can
perform only one of the action types.

Because of this, we define an operator ⊕ that can be applied to sets of activities. Intuitively,
A1 ⊕ A2 means that a state has a signature of either A1 or A2. Semantically:

S(A1 ⊕ A2) = S(A1) ∪ S(A2)

If we now take A = {requestA} ⊕ {requestB} ⊕ {requestC}, then for the client we have S(A) =
{ClientA,ClientB,ClientC} as required. We can do the same for the process and reply activities to
complete our abstraction. It is natural to then question what would happen if the processing on the
server were more complicated, and we will return to this later.

In the case of this simple example, we can aggregate both the states and activities without encoun-
tering any problems. Aggregation of activities means that we treat all the activities as being of the
same type. Hence when we construct an abstract Markov chain, for example, we have a single interval
of rates for all the activities. To see how this improves the abstraction, consider the aggregated client
state without activity abstraction – we would have to say that requestA occurs at some rate in the
interval [0, rnet ], since only one of the states can perform a requestA action. If, however, we aggregate
the activities, then the rate of performing a request action is now [rnet , rnet ].

We have to be more careful than this in general, however. Since we can aggregate states that
individually cannot perform every action, we will introduce the possibility of deadlock when we
synchronise with other components that have been similarly aggregated. This is because, in the
abstraction, we are unable to know which of the concrete states we were originally in. Hence a safe
abstraction will consider all possible combinations of states, even though some may not have been
possible originally. To avoid this, when we aggregate with respect to A = A1 ⊕ . . . ⊕ An, we require
that the following condition holds of at least one of the synchronising components:

S(A1 ⊕ . . . ⊕ An) = S(A1 ∪ . . . ∪ An)

This ensures that one component has states in which all the action types in A can be performed,
which is illustrated in Figure 1.

Now that we have introduced this constraint, we see immediately that it is broken by our abstrac-
tion of the reply activities. This is because the aggregate state ‘forgets’ about the inherent coupling
in the original model – it does not know whether the reply sent by the server is what the client is
expecting. To capture the notion of coupling, we extend our description of activities with a further
operator, ‘⊙’. Intuitively, A1 ⊙ A2 means that a state must have signature A2, and all possible
predecessor states must have signature A1. More formally:

S(A1 ⊙ A2) = {s′ ∈ S | ∀s. s → s′. ∀α ∈ A1. ∀β ∈ A2. ∃s′′. s
α
−→ s′

β
−→ s′′}

3



Figure 1: Condition for abstraction over {α} ⊕ {β}

The synchronisation condition holds for components synchronising over (A1 ⊙ A′
1) ⊕ (A2 ⊙ A′

2) if it
holds for the same components synchronising over A1 ⊙A2. In other words, once the two components
are coupled, we can be sure that their signatures will match in future.

Returning to our example, we can now describe the abstract action types of the server as follows:

A1 = {requestA} ⊕ {requestB} ⊕ {requestC}
A2 = ({requestA} ⊙ {process}) ⊕ ({requestB} ⊙ {process}) ⊕ ({requestC} ⊙ {process})
A3 = ({requestA} ⊙ {process} ⊙ {replyA}) ⊕ ({requestB} ⊙ {process} ⊙ {replyB})

⊕ ({requestC} ⊙ {process} ⊙ {replyC})

And the abstract action types of the client are:

A1 = {requestA} ⊕ {requestB} ⊕ {requestC}
A4 = ({requestA} ⊙ {replyA}) ⊕ ({requestB} ⊙ {replyB}) ⊕ ({requestC} ⊙ {replyC})

Note that we allow two sequenced abstract action types to synchronise if they do not precisely match.
We define the interface of such an abstract action type to be the list of signatures that contain action
types over which we cooperate. If L is the set of such cooperating action types, then:

I({α1, . . . , αn}) = {α1, . . . , αn}
I(A1 ⊙ A2) = A1 ⊙ I(A2) if L ∩ A1 6= ∅
I(A1 ⊙ A2) = I(A2) if L ∩ A1 = ∅
I(A1 ⊕ A2) = I(A1) ⊕ I(A2)

Two abstract action types are allowed to cooperate if and only if they have the same interface. Hence
A3 can cooperate with A4, because I(A3) = I(A4).

We noted previously that the processing of requests in our example is very simple, but that it
could be more complicated. In particular, the server could potentially have a number of internal
stages to its processing. If all of these internal stages have the same signature A, such that no action
types in A are cooperated over, then we can use the iteration operator A+. This means that one or
more states with signature A are passed through in sequence, and we can define it in terms of the ‘⊕’
and ‘⊙’ operators:

A+ = A ⊕ (A ⊙ A) ⊕ (A ⊙ A ⊙ A) . . .

For example, if our server had multiple processing stages for each request type, we could rewrite the
abstract state A2 as follows:

A2 = ({requestA} ⊙ {process}+) ⊕ ({requestB} ⊙ {process}+) ⊕ ({requestC} ⊙ {process}+)

4



This would combine all the processing steps into a single state in the abstract model. In general, this
is not a good thing to do – it is certainly safe, but can yield very poor abstractions. For example,
in an abstract Markov chain the probability of exiting this state would be in the interval [0,1], since
the intermediate processing states have zero chance of exiting, whereas the final processing state is
certain to exit. We can do much better when so-called insensitivity [7] conditions hold, but this is
beyond the scope of this paper.

To summarise, we have introduced the following regular expression-like operators for describing
sets of states that we wish to aggregate:

• {α1 . . . αn} – the state can perform all action types α1 . . . αn.

• A1 ⊕ A2 – the state has a signature of either A1 or A2.

• A1 ⊙ A2 – the state has a signature of A2, and all predecessor states have a signature of A1.

• A+ = A ⊕ (A ⊙ A) ⊕ (A ⊙ A ⊙ A) . . .

3 Conclusions

In this paper, we described an approach to specifying aggregations of states in a PEPA model using
activities. This work is at quite an early stage, and it was our aim to give an outline of the ideas
involved, rather than to provide a formal framework. Some of the details not discussed here are in
relation to the particular abstraction methods used – for example abstract Markov chains or stochastic
bounds – and are fairly straightforward to work out. There are, however, many challenging issues
that remain to be fully explored, such as the interaction between insensitivity and abstraction, and
the development of a simpler formalism for direct use by modellers wishing to abstract. The use of
activities is an important step to providing a more intuitive way of specifying abstractions, but we
do not yet know whether the current constructions are sufficient, or whether we need to extend our
specification further.

References

[1] H. Fecher, M. Leucker, and V. Wolf. Don’t know in probabilistic systems. In Proceedings of SPIN’06,
number 3925 in Lecture Notes in Computer Science, pages 71–88, 2006.

[2] J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University Press, 1996.

[3] J-P. Katoen, D. Klink, M. Leucker, and V. Wolf. Three-valued abstraction for continuous-time Markov
chains. In W. Damm and H. Herrmanns, editors, Proceedings of 19th International Conference on
Computer-Aided Verification (CAV’07), number 4590 in Lecture Notes in Computer Science, pages 316–
329. Springer-Verlag, 2007.

[4] J.G. Kemeny and J.L. Snell. Finite Markov Chains. Springer-Verlag, 1976.

[5] M.J.A. Smith. Stochastic bounding of PEPA models. In Proceedings of Process Algebra and Stochastically
Timed Activities (PASTA), 2007.

[6] D. Stoyan. Comparison Methods for Queues and Other Stochastic Models. Wiley & Sons, New York, NY,
USA, 1983.

[7] P. Whittle. Partial balance and insensitivity. Journal of Applied Probability, 22(1):168–176, 1985.

5


